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Abstract—We advocate for and introduce TRANSense, a framework for urban transportation service analytics that combines

participatory smartphone sensing data with city-scale transportation-related transactional data (taxis, trains, etc.). Our work is driven by

the observed limitations of using each data type in isolation: (a) commonly-used anonymous city-scale datasets (such as taxi bookings

and GPS trajectories) provide insights into the aggregate behavior of transport infrastructure, but fail to reveal individual-specific

transport experiences (e.g., wait times in taxi queues); while (b) mobile sensing data can capture individual-specific commuting-related

activities, but suffers from accuracy and energy overhead challenges due to usage artefacts and lack of appropriate sensing triggers.

TRANSense demonstrates how a judicious fusion of such disparate data sources can overcome these challenges and offer novel

insights. We detail two examples: (a) Taxi Service Analyzer that provides accurate detection of commuter queuing for taxis and

estimates their wait time, by using taxi trip records to identify potential taxi locations with high demand and subsequently selectively

triggering mobile sensing-based queuing analytics on nearby commuters; and (b) Subway Boarding Analyzer that identifies instances

when passengers fail to board arriving trains, by first estimating train arrivals from temporal patterns of passenger egress at station

gantries, and then using mobile sensing-based analysis of commuter movement behavior on platforms. Experiments with real-world

datasets (from over 20,000 taxis and 1.7 million commuters in Singapore) show the power of this approach: the taxi service analyzer

detects commuter queuing with over 90 percent accuracy with negligible energy overhead and estimates wait times with error margins

below 15 percent, whereas the subway boarding analyzer can detect failed boarding events with a precision of over 90 percent

(more than thrice what is achievable through purely mobile sensing).

Index Terms—Data integration, public transportation, data analysis, crowdsourcing, pervasive computing

Ç

1 INTRODUCTION

DEVELOPING adaptive and personalized public transpor-
tation services is a key component of future smart city

initiatives. To support such adaptive services, transportation
analytics research presently adopts one of two distinct
approaches: (a) The infrastructure-driven approach utilizes
transactional informatics data that are increasingly becom-
ing available frompublic transportation information systems
(e.g., taxi trajectories and logs [1], smart card usage history
for subway or bus rides [2]); while (b) The participatory sens-
ing approach [3] utilizes data from smartphone-embedded
inertial & location sensors (e.g., GPS, accelerometer and com-
pass), obtained from a pool of participating commuters.

Both these approaches have their ownmerits anddemerits:
the infrastructure-based approach is usually comprehensive

and accurate (it typically has visibility on the movement his-
tory and trip history of every vehicle) for understanding and
predicting aggregate traffic characteristics and patterns, but
cannot observe an individual commuter’s “personal commut-
ing experience”. For example, it cannot reveal how long a per-
son had to wait at a taxi stand prior to boarding. In contrast,
participatorymobile sensing can capture an individual’s com-
muting experience, but clearly provides only a (possibly non-
representative) sampling of the overall state of the transporta-
tion infrastructure. For example, it cannot reveal how many
people board or disembark from a subway train at the stations
along its route. Moreover, continuous mobile sensing-based
recognition of commuting activities can suffer from both accu-
racy degradation (inertial sensors are notoriously sensitive to
usage-driven artefacts) and high energy overheads (sensors
such asGPS& gyroscopes have a very high power drain).

To date, transportation analytics has employed either
approach in isolation, with little exploration of how these two
independent data streams can be intelligently combined to
create innovative new insights. Ourwork in this paper tackles
this gap, by demonstrating how these two data streams (infra-
structure and mobile) can jointly provide deeper insights into
urban transportation and commuting behavior, than cur-
rently possible. In particular, we propose a collaborative
framework for transportation service analytics, called
TRANSense, that (a) applies spatiotemporal analytics on trans-
portation infrastructural data to detect likely anomalous
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transportation events (e.g., a high demand for taxis at specific
taxi stands), and (b) uses such anomalous events to smartly
trigger mobile sensing and thereby recognize specific com-
muting-related activities of interest (e.g., queuing for taxis)
withmuch higher accuracy and lower energy cost.

To provide practical embodiments of this proposed
framework, we shall demonstrate two different analytics
applications: (i) a Taxi Service Analyzer that detects passen-
ger queuing for taxis and estimates the queuing time at the
taxi demand hotspots, and (ii) a Subway Boarding Analyzer
that identifies events where a commuter fails to board an
arriving train (most likely due to overcrowding). Most
importantly, we show the symbiotic benefit of fusion of these
two data sources: neither of these two services can be readily
realized by using a single type of data stream, and the accuracy of
recognizing both the underlying infrastructure-based events and
individual commuting activities is significantly improved via
mutual reinforcement using the other data stream. Using a com-
bination of small-scale mobile sensing data and currently
available “big data” from public transportation information
sources in Singapore, we show that these two novel analyt-
ics applications can be readily realized with a high fidelity.

Our work in this paper thus makes the following key
contributions:

� Unified Framework for Infrastructure+Mobile Sensing:
We propose a novel transportation analytics frame-
work that combines spatiotemporal analytics on
large-scale data from different urban transportation
information systems with mobile sensing data from
a participatory pool of commuters. Using the two
services mentioned above as exemplars, we show
how such combined analytics can provide hard-to-
obtain, individual-specific commuting insights with
high accuracy as well as lower energy overheads.

� Smart Commuter Mobile Sensing: We adopt a hierar-
chical decomposition approach to design and imple-
ment a sensor-based smartphone application to
collect different context information from public
transportation commuters. The application supports
two triggering mechanisms for energy-efficient sen-
sor data collection: either based on automatic loca-
tion-driven events (geofences) or remotely by a
cloud messaging mechanism.

� Taxi Service Analyzer: We describe how this analytics
service combines the city-scale taxi trace data with
smartphone sensing data to detect passengers
queueing for taxis and accordingly estimates the pas-
senger wait time. The key innovations in this system
include (i) the use of taxi data to identify taxi
demand hotspots and further infer the locations
where passenger queues may be occurring, and (ii)
the aggregation of the smartphone-sensing data
from multiple passengers to estimate the passenger
wait time at such hotspots, and (iii) the use of hot-
spot-driven mobile sensing triggers to reduce the
energy overheads without sacrificing the ability to
capture relevant queuing events. Using the month-
long trace data of over 20,000 Singapore taxis,
together with the participatory sensing data at 6 dif-
ferent taxi stands, we show that this application can

(a) detect the queuing activity of commuters with
over 90 percent accuracy, (b) estimate the queuing
time at taxi stands within an error of 15 percent, and
(c) impose only minimal overhead (a hypothetical
worst-case scenario, where a passenger stays in the
vicinity of a taxi hotspot throughout the day, would
drain only 4.4 percent of the smartphone’s battery).

� Subway Boarding Analyzer: We show how to combine
the large-scale entry/exit traces of subway data (cap-
tured by tapping of RFID-equipped ticketing card at
stations) with the on-platform passenger activity
data (captured by the smartphone inertial sensors) to
accurately identify the episodes of failed boarding:
where an individual is unable to get on a train (most
likely due to overcrowding). The key innovations
include (i) a novel Train Arrival Detection (TAD)
algorithm that uses the temporal pattern of passen-
ger exit traces (provided by infrastructure informat-
ics data) to indirectly identify train arrival events,
and (b) the fusion of such probabilistic train arrival
information with an individual’s on-platform activ-
ity (captured by mobile inertial sensing) to identify
the instances of failed boarding. By combining a sub-
way dataset, which includes 1.7 million commuters
and nearly 50 million transactions, with the small-
scale mobile sensing studies, we show that this sys-
tem can identify the failed boarding events with a
precision of over 90 percent, that is more than thrice
what is achievable via pure mobile sensing (which
often mistakenly identifies a passenger’s random
movement as attempting to board a train).

While our two transport service analyzer applications are
both novel, we believe that the main impact of our work is
to highlight the broader possibility of creating innovative
new personalized transportation services, based on a combi-
nation of transportation informatics data and commuter par-
ticipatory sensing.

The rest of thepaper is organized as follows: Section 2depicts
the overall system architecture. Section 3 describes the designed
commuter sensing tool. In Sections 4 and 5, we respectively
present the two exemplary applications (Taxi Service Analyzer
and Subway Boarding Analyzer, along with the empirical evalua-
tion results. The discussion and related work are then given in
Sections 6 and 7.Wefinally conclude in Section 8.

2 SYSTEM OVERVIEW

The block diagram of TRANSense is illustrated in Fig. 1,
which mainly consists of three subsystems, namely Public
Transportation System, Commuter Sensing System and Data
Acquisition & Analytics System.

2.1 Public Transportation System

This system covers different urban transportation services,
such as taxi, subway and bus service. Each service leverages
on the corresponding informatics infrastructure to acquire
the relevant transportation data. For example, taxi service
generates each taxi’s real-time GPS location and taxi status,
which is collected by the in-vehicle telematics device on
taxis. Such individual taxi information can be instantly sent
to the backend cloud using the cellular service. Another
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example is the subway service that utilizes an RFID-based
ticketing infrastructure to record passenger ingress and
egress (tap-in and tap-out) information at each subway sta-
tion. The bus service also collects the passenger boarding
and alighting information on each operating bus by leverag-
ing on a similar electronic ticketing system.

2.2 Commuter Sensing System

This system adopts the participatory sensing strategy to
capture transportation-relevant context from the smart-
phones of participating commuters. More specifically, a
lightweight application, called user context collector (UCC), is
installed on the smartphones of participating commuters.
The application gathers the information from the embedded
smartphone sensors (e.g., accelerometer or barometer), and
meanwhile performs a high-level context recognition task.
The sensor data collection and the context sensing process
can be activated and terminated automatically, and thus the
entire process does not need any user’s manually input or
configuration. When installing the UCC application, it is
necessary to get the user permission for collecting the sensor
data and running the non-intrusive context sensing service.

2.3 Data Acquisition & Analytics System

This system is the central component of the proposed frame-
work to aggregate, fuse and analyze heterogenous data col-
lected from the above described two systems. It adopts a
cloud-based three-layer hierarchical architecture, where each
layer has its own unique and independent functionality:

� Transportation Data Collection Layer: This layer collects
and manages the incoming raw and large-scale trans-
portation data from transportation services (e.g., taxi
service and subway service). It provides separate
interfaces and indexing structures for receiving
and managing large volumes of spatiotemporally-
indexed data. The transportation data cleaning and
preprocessing are also conductedwithin this layer.

� Transportation Data Processing Layer: This layer
mainly conducts the analytics on the data from the
transportation system, and outputs the intermediate
analytics results (e.g., the likely current taxi hotspot
locations) to the upper layer. A variety of data min-
ing and analytics techniques can be applied in this
layer. Besides, this layer also includes a specifically
designed component, called on-cloud trigger, which
is used to activate the commuter sensing tasks from

the cloud side. The triggering decision is made
mainly based on the intermediate analytics results
from this layer. Such intermediate results together
with the commuter sensing results would be also
sent to the upper layer.

� Data Fusion & Analytics Layer: This layer first aggre-
gates and coordinates the commuter sensing results
from smartphones. After that, it applies the appro-
priate fusion logic to combine the commuter sensing
results from smartphones with the intermediate ana-
lytics results from the transportation data. Finally, it
provides the key analytics and insights for the corre-
sponding transportation service either in an online
manner or offline manner.

In short, the above-described three systems in TRANSense
work cooperatively to acquire, process and analyze the data
from both public transportation services and commuters.
The final analytics results would possibly benefit different
stakeholders, including transportation service providers, rel-
evant government agencies and public commuters.

3 USER CONTEXT COLLECTOR DESIGN

To accurately and effectively collect the commuter context
information from a smartphone, we adopt a hierarchical
decomposition approach to design and implement a robust
andfine-grained application, called the user context collector.

3.1 UCC Workflow

The UCC mainly consists of an on-smartphone trigger and
three classifiers. The on-smartphone trigger is mainly used to
automatically trigger the sensor data collection, and then the
three classifiers use different feature sets to identify different
types of user activity and context. The basic workflow of the
UCC is shown in Fig. 2, which can be described as below:

(1) The installed UCC registers and runs a background
service, which periodically fetches the latest location
list, such as the current set of taxi demand hotspots

Fig. 1. Block diagram of the framework.

Fig. 2. User context collector workflow.
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or crowded subway stations, from a backend service.
If the smartphone’s current location is nearby any
listed location, the sensor data collection is triggered
automatically; otherwise, the UCC sleeps for a spe-
cific time period.

(2) Once the sensor data collection is triggered, UCC
first applies a low-pass filter to the raw 3-axis accel-
erometer measurements and transforms the readings
from the phone’s coordinates to the world coordi-
nates, i.e., the earth reference frame, by multiplying
with the rotation matrix [4], [5].

(3) The resulting accelerometer frames are first run
through a kinematic motion classifier, to detect whether
the smartphone is in a “fast movement” state, which
is possibly caused by taking a vehicle (subway, bus
or taxi) or walking. If the fast movement is not
detected, UCC enables the upper two classifiers and
meanwhile keeps the kinematic motion classifier
running. Whenever a fast movement state is newly
detected (indicating that the user has boarded the
bus, taxi or train), UCC would notify the cloud side,
and then abort the sensor data collection and the
classification processes.

(4) When no fast movement is detected, the second clas-
sifier, called basic activity classifier, starts to identify
user’s basic activity over short-duration time win-
dow (e.g., 2 seconds). Using the accelerometer data
as the input, the classifier has four output options,
namely stationary, stepping, walking and others, to
label each non-overlapping short-duration time win-
dow. The sequence of the classifier outputs serve as
the inputs of the upper advanced activity classifier.

(5) The advanced activity classifierperforms amore complex
and high-level activity recognition task. Our current
design is to make the distinction between queuing and
non-queuing for each long-term time window (e.g., 120
seconds). If a queuing activity is successfully detected
for the current time window, it would be continuously
running for the next long-term timewindow. The classi-
fier currently has two distinct queuing models: the first
model is designed for the common “continuous” queu-
ing scenarios, e.g., at taxi stand or supermarket counter,
while the second model is for “batched” queuing
behavior, e.g., at a subway or bus station. The appropri-
ate model is chosen based on the current location and
the corresponding transport service.

Note.While ourUCCdesign is generic, the specific classifi-
cation models implemented currently conform to the specific
applications/use cases that we demonstrate. The develop-
ment of mobile sensing based commuting activity classifiers
is NOT the major focus of our work; as needed, the UCC can
be extended to capture other activities (e.g., TransitLabel [6]
which captures other activities inside a subway station).

As described in the UCC workflow, before building the
classificationmodels, the 3-axis acceleration data is first trans-
formed from the phone’s coordinates to the earth coordinates
using the well-known quaternion-based techniques, and an
implementation publicly available on Google developer man-
ual [7]. The transformed acceleration measurements are then
independent of phone’s orientation, and thus would not be
greatly influenced by the phone placement and position.

The three classifiers are not strictly in a hierarchical struc-
ture: the advanced activity classifier requires the accurate
inputs from the basic action classifier, and thus its accuracy
is indeed influenced by the basic action classifier. The kine-
matic motion classifier is mainly used to trigger the system
using the detected fast movement, which includes motor-
ized movement, subway movement and pedestrian movement.
For example, when the motorized movement is wrongly
detected as subway movement, it will also trigger the sys-
tem and would not directly influence the accuracy of the
upper two classifiers.

3.2 UCC Classifier Design

3.2.1 Basic Feature Extraction

When the UCC application is activated, it first transforms 3-
axis accelerometer measurements from the phone coor-
dinates’s to the world coordinate. After that, the UCC seg-
ments the transformed data into non-overlapping fixed-size
frames, and computes the following features for each frame:

� Frequency Domain: the 5 frequency domain features
for the activity recognition, including spectral
energy, entropy, peak position, wavelet entropy and
wavelet magnitude, and thus a total of 15 features
across the 3 axes.

� Time Domain: the 10 time domain features including
mean, variance, standard deviation, magnitude, cor-
relation, minimum, maximum, range, interquartile
range and zero-crossings rate, and thus a total of 30
features across the 3 axes.

3.2.2 Kinematic Motion Classifier

Running at the root of the UCC classifier hierarchy, the
kinematic motion classifier is mainly used to detect whether
the smartphone user is in a fast movement status or not (i.e.,
this is, eventually, a binary classifier). The classifier has four
intermediate output options: motorized movement, subway
movement, pedestrian movement and others. Motorized move-
ment means user taking motorized transportation (e.g., taxi
and bus), subway movement means user taking subway train,
pedestrian movement means user continuously walking. All
these three classes are eventually mapped to a “fast move-
ment” label. Others means that the user is engaged in some
other unknown motion, distinct from “fast movement”.

The classifier utilizes all the mentioned frequency domain
and time domain features, and thus its feature space consists
of 45 features across the 3 axes. The time domain features on
the horizontal plane provides the highest discrimination for
identifying the accelerations and decelerations that occur
when a user is in a vehicle. The time window size for this
classifier needs to be relatively large to cover several vehicle
acceleration or deceleration periods.

Note that it is also feasible to use alternative methods (e.g.,
GPS-based methods) for fast movement detection, e.g., peri-
odically estimate the speed using smartphone’s GPS data.
However, the GPSmodule consumesmuchmore energy than
the accelerometer, and is often unsuitable at several transpor-
tation-relatedand locations, such as underground subway sta-
tions or taxi stations in a downtown area with with dense
buildings and narrow roads (urban canyon effect [8]).
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3.2.3 Basic Activity Classifier

The basic activity classifier utilizes all the mentioned time
domain and frequency domain features as well. The time
window size for this classifier needs to be relatively small,
as a large time window may cover multiple user basic
actions. It would label each time window with one of the
four options, i.e., stationary, stepping, walking and others.
Note that stepping means slowly moving forward, which
often occurs during queuing. The output labels will be sent
to the upper advanced activity classifier as the inputs.

The main difference between the walking class in the basic
activity classifier and the pedestrian movement class in the kine-
matic motion classifier is the frame size: walking is associated
with 2-second frames, whereas the pedestrian movement class
uses a 20-second frame to capture a relatively long-lived
walking activity.

3.2.4 Advanced Activity Classifier

Running at the top level of the UCC classifier hierarchy, the
advanced activity classifier conducts the high-level user activity
distinction. Borrowing from prior work in queuing detection
(the QueueVadis system in [9]), the classifier distinguishes
between queuing and non-queuing activity context.

We separately built two models for two different queuing
scenarios: (a) model-A is mainly for queuing scenarios where
people move forward gradually, such as at a taxi stand or
supermarket checkout counter; (b) model-B is for scenarios
that people move in a batched fashion, such as at subway plat-
form. Both models need to aggregate the consecutive outputs
from the lower basic activity classifier and then computes the
following features over the larger time window: the number
of transitions between the four basic actions, the mean and
variance of each basic action’s time duration. Thus, totally 18
features, which are all derived from the basic activity classifier
outputs, are used in the advanced activity classifier. In the eval-
uation section, we shall see that the time window size for this
classifier needs to be large enough to capture the characteris-
tics of the queuing activity.

3.2.5 Learning Algorithm

We evaluated several supervised learning models, and
finally adopted the decision tree C4.5 for both the kinematic
motion classifier and the basic action classifier, and naive
Bayes for the user activity classifier. The resulting tree mod-
els and the probability models can be interpreted and
implemented on smartphones.

3.2.6 Phone Placement and Usage

The phone placement and usage obviously influence the accu-
racy of the accelerometer-based activity detection. For most
queuing/waiting scenarios, we observe that commuters either
hold the smartphone on their palm or have it inside a garment
pocket or bag; accordingly, wemainly evaluated the classifica-
tion performance based on such phone placement positions.
Similar to the most accelerometer-based activity recognition
systems, our classification techniques exhibit poor perfor-
mance when the phone is subject to usage-induced artefacts,
such as the user casually swinging or frequently rotating the
smartphone. The most common approach is to simply discard
the sensor datawhen such artefacts are detected.

3.3 Trigger Mechanism from Cloud

Besides actively triggered from the smartphone, the UCC
application can also be remotely enabled from the cloud
side. In our current implementation [10], such remote trig-
gering is supported via the google cloud messaging (GCM)
service (which now supports Android and iOS devices).
When a GCM message arrives, it can wake up the device
from the sleep state and then activate the specific application
using the so-called Intent Broadcast. Fig. 3 demonstrates the
UCC installation and the cloud-based triggering process.

Normally, each GCM message sent out by the backend
system carries the latest location list, and the enabled UCC
would first run a background process to retrieve the current
device location by using the Google Location APIs [11]. If the
device’s current location is close enough to any of the loca-
tion in the list, the UCC would then initiate the sensing and
analytics pipeline. Otherwise, the UCC application acknowl-
edges its current location to the server and continues to sleep.

To determine the current location of the device, UCC
adopts the Google Location APIs which determines the
location by combining different data sources including GPS,
cellular signals and WiFi signatures. The GPS module usu-
ally imposes a higher energy overheads than others. In prac-
tice, we found that most of the located places by UCC are
fairly accurate even the GPS module is disabled. It is proba-
bly because of the high density of cellular towers and WiFi
access points in Singapore.

3.4 UCC Evaluation

We implemented the Android version of the UCC and
tested it on Samsung Galaxy S3 and S4. The 3-axis acceler-
ometer sampling frequency is set to 50 Hz. The experiment
data are collected by multiple participants at 6 different taxi
stands and 9 different subway stations under the following
natural, but somewhat-controlled, scenarios:

� The participant joins a taxi waiting queue, and
choose to either walk away or get on a taxi when he
reaches the front of the queue. The data are collected
by 12 participants during a three-week period.

� The participants join a subway waiting queue on the
platform, and either get on the arriving train or

Fig. 3. The GCM workflow with UCC.
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continue waiting for the next one due to overcrowd-
ing. This data are collected by 12 participants during
a three-week period.

� The participants conduct ‘random’ activities (except
queueing) nearby the taxi stands and subway sta-
tions, e.g., talking with others, purchasing coffee
from Starbucks, or simply walking past the taxi
stands or subway stations. The data are collected by
7 participants during a two-week period.

� The participants take taxi, subway and bus as a nor-
mal passengers. The data are collected by 6 partici-
pants during a two-week period.

For the kinematic motion data (on the train, taxi or bus),
each participant collected data daily (mainly during their
trips between office and home) over multiple days, for a
total duration of 2.1 hours on average. For the basic action
data, each participant collected around 1.2 hour data for
each of the four actions respectively (i.e., stationary, stepping,
walking and others). Queuing data was collected for a cumu-
lative duration of approx. 28.6 hours, and involved 39 dif-
ferent queuing episodes at either taxi stands or subway
stations. When building the classifiers, we randomly split
the training data and testing data into 9:1, and adopt the 10-
fold cross-validation approach to evaluate the built models.
Moreover, we applied sensitivity analysis to ensure that our
models did not suffer from over-fitting.

All the participants are required to record down the
ground truth and use any of the three phone positions, i.e.,
on palm, in trouser pocket and in bag, to ensure the results are
not sensitive to the phone placement.

3.4.1 Kinematic Motion Classifier

Table 1 gives the evaluation results of the kinematic motion
classifier: we see that the F1 scores of motorized movement
and pedestrian movement are both above 0.8, demonstrat-
ing that the classifier can well distinguish these two types
of fast movement. The F1 score of subway movement is
sightly lower (around 0.75), which is probably because
the subway ride is generally smooth with limited vibra-
tions and jerks than taking car or walking. To further
improve the accuracy for the subway movement class,
the barometer measurement data can be collected and
utilized by the UCC [12]. In short, the kinematic motion
classifier is able to successfully detect the desired fast
movement types (motorized, subway and pedestrian), which
would be used to obtain the queuing end time and timely
terminate the UCC sensor data collection. By testing dif-
ferent values and evaluating the experiment results, we
set the time window size for this classifier to 20 seconds,
as such period normally covers several rounds of taxi and
subway train accelerations and decelerations.

3.4.2 Basic Action Classifier

Table 2 shows the evaluation results of the basic action classifier
andwe see that the overall classification results achieve a high
accuracy (all F1 score above 0.8). The stepping class has a rela-
tively low F1 score, but the overall experiment results show
that all the desired basic activities can bewell identified.

The classifier adopts 2 seconds as its time window size,
as a larger time window may include multiple basic actions
(e.g., several stepping actions in one time window) and
accordingly decreases the classification accuracy.

3.4.3 Advanced Activity Classifier

Table 3 gives the evaluation results of the advanced activity
classifier in mode-A and mode-B respectively: we see that
mode-A achieves a slightly higher accuracy than mode-B,
and meanwhile the F1 score of the queuing class in mode-B
is slightly below 0.8. It is probably because queuing for sub-
way train on platform (mode-B) does not involve many
‘typical’ stepping/stationary transitions. However, the
overall results demonstrate that the classifier can success-
fully detect the passenger queuing activities in both mode-
A and mode-B, i.e., at both taxi stand and subway platform.

The time window for this classifier needs to cover several
taxi arrival events or train arrival events. In the practical
implementation, the cloud side can periodically compute the
average arrival rate of the taxis or subway trains, and notify
the UCC the latest value for adjusting thewindow size.

3.4.4 Energy Consumption

Fig. 4 shows the energy consumption of UCC: we see that
around 38 milliWatt (mW) is consumed for only sensor data
collection, and the value slightly increases to 53 mW after
enabling the three classifiers. It indicates that the classifiers
impose insignificant energy overhead. The total energy con-
sumption of UCC is around 84 mW, which includes running
the GCM service and periodically using the Google Location
APIs (GPS disabled). Note that the above values are obtained
by using the total energy consumption subtracting the back-
ground energy consumption, where the background energy
is measured by keeping the CPU on using the Android
WakeLock mechanism1 and meanwhile minimizing all the

TABLE 1
Accuracy of Kinematic Motion Classifier

Precision (%) Recall (%) F1 score

Motorized Movement 86.0 84.1 0.85
Subway Movement 76.2 74.4 0.75
Pedestrian Movement 82.7 87.8 0.86
Others 84.1 82.8 0.83

TABLE 2
Accuracy of Basic Activity Classifier

Precision (%) Recall (%) F1 score

Stationary 87.5 89.4 0.88
Stepping 82.6 80.9 0.82
Walking 87.8 84.3 0.86
Others 80.8 84.0 0.82

TABLE 3
Accuracy of Advanced Activity Classifier

F1 Score Mode-A Mode-B

Queuing 0.832 0.794
Non-Queuing 0.890 0.866

1. https://developer.android.com/training/scheduling/wakelock.
html
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default phone services. The Monsoon power monitor2 is used
to conduct all themeasurements.

4 EXEMPLARY APPLICATION 1: TAXI SERVICE

ANALYZER

To demonstrate the design, operation and performance of
our TRANSense framework, we present two exemplary and
practical applications: taxi service analyzer and subway board-
ing analyzer. In this section, we present the taxi service ana-
lyzer, with a special focus on howUCC-generated individual
context information is fused with infrastructural data to
detect passenger queues and estimate thewait time.

4.1 Problem Description

Queuing for taxis is an in-escapable fact of life in densely
populated Asian cities, such as Singapore and Hongkong.
Accurate and real-time estimation of such queuing delays
would not only help public commutersmakemore-informed
transportation choices, but also help taxi drivers to find the
demand hotspots. Moreover, regulatory authorities (such as
the Land Transport Authority (LTA) in Singapore) require
such queue information to develop new policies and
fare structures. Currently, in Singapore, the LTA conducts
daily surveys (published publicly3) by manually recording
down the taxi passenger waiting time. Our goal is to replace
this inefficient manual process with an ubiquitous, smart-
phone-based approach for both passenger queue detection
and queuing delay estimation.

4.2 Transportation Data Collection Layer

Each taxi in Singapore periodically reports their location,
status and other critical information to the backend via its
in-vehicle device, called mobile device terminal (MDT). By
leveraging on the MDT installed on each taxi, more than
20,000 taxis in Singapore keep collecting and updating their
real-time states and GPS locations. Such taxi information is
then transmitted to a backend system using either general
packet radio service (GPRS) or 3G cellular network. The
transportation data collection layer would collect and buffer
such incoming taxi MDT data.

Each MDT message normally contains five important
fields: Taxi State, GPS Location, Instantaneous Speed, Taxi ID
and Timestamp. The typical taxi states include FREE (avail-
able for passenger), passenger on board (POB) andONCALL

(booked by passenger). Any change of taxi state would trig-
ger a new MDT message sent to the backend. Besides, the
MDT periodically sends the GPS location update message.
We define the important terms and expressions to be used
for the taxi data processing.

Definition 1. Individual taxi’s trajectory z: A temporally
ordered sequence of the MDT messages from one taxi, i.e.,
p1 ! � � � ! pi ! � � � ! pn, where pi (1 � i � n) is the MDT
records containing the taxi state pi:state, instantaneous
speed pi:speed, latitude coordinate pi:lat, longitude
coordinate pi:lon and timestamp pi:ts.

Definition 2. Multiple taxis’ trajectory set Z: A collection of
the individual taxi’s trajectories, i.e., Z ¼ fzjjj ¼ 1; 2; . . .g,
where zj is the jth taxi’s individual trajectory.

Definition 3. Demand Hotspot spot set Qloc: A collection of
locations, i.e., Qloc ¼ fqrjr ¼ 1; 2; . . .g, where qr is the rth spot
witnessing a high demand for taxis.

4.3 Transportation Data Processing Layer

In this layer, the main objective is to first determine the taxi
demand hotspots, and then infer the hotspots that may
have passenger queue (PQ). The taxi demand hotspots are
normally the most frequent taxi pickup locations, and PQ
can be inferred from the taxi pickup behavior and taxi book-
ing information.

To accurately and timely determine taxi demand hotspots,
we propose a practical algorithm, called demand hotspot
detection (DHD) algorithm. The basic idea behind the DHD
algorithm is that given the taxi trajectory set Z over the buffer-
ing duration Tb, we first identify the taxi pickup events and
their corresponding locations. After that, it uses the density-
based clusteringmethod to find out all the frequent taxi pickup
locations. The complete algorithm is shown inAlgorithm 1.

Algorithm 1. Demand Hotspot Detection Algorithm

Input: All taxi trajectory set Z over buffering duration Tb, speed
threshold hsp.

Output: Taxi demand hotspot set Qloc over the buffering
duration.

1: k 1; Rk  ;; G ;;
2: for each individual taxi’s trajectory z in Z do
3: for i ¼ 1! n do
4: if pi:speed � hsp and Rk ¼ ; then
5: Rk:Addðpi�1Þ; Rk:AddðpiÞ;
6: else if pi:speed � hsp and Rk 6¼ ; then
7: Rk:AddðpiÞ;
8: else if pi:speed > hsp and Rk 6¼ ; then
9: Rk:AddðpiÞ; k kþ 1; Rk  ;;
10: for each Rk 6¼ ; do
11: if {pi:state in Rk changes from FREE to POB OR changes

from ONCALL to POB} then
12: Add the first POB location to the location set G;
13: Run DBSCAN clustering algorithm on the set G;
14: Add the centroid of the found clusters into Qloc;

The DHD algorithm mainly consists of 3 steps: first, it
extracts multiple sub-trajectories from each individual taxi’s
trajectory, i.e., R1; R2; . . . ; Rk, where each sub-trajectory has
at least one record with the speed below the given

Fig. 4. Energy consumption of UCC and its components.

2. https://www.msoon.com/LabEquipment/PowerMonitor/
3. http://www.lta.gov.sg/content/ltaweb/en/public-transport/

taxis/taxis-and-the-lta.html
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threshold hsp. They are regarded as the pickup event candi-
dates; second, it only keeps the sub-trajectory Rk that has the
specific pickup patterns, namely the taxi state changes from
FREE to POB orONCALL to POB. From each selectedRk, the
algorithm takes its first POB location after its state transition,
and adds it to the location set G. Finally, the algorithm runs
the density-based clustering algorithm DBSCAN [13] on the
location setG, and computes the centroid of each found clus-
ters. These centroids are the identified demand hotspots dur-
ing buffering duration Tb. Note that we set the buffering
duration as a fixed-size moving time window to store and
batch process the newly receivedMDT data.

Based on the identified taxi demand hotspots, the system
further infers potential PQ locations using a simple and prac-
tical method, called passenger inference (PQI) algorithm. As
the inputs of the PQI algorithm, NfreeðqrÞ is the number of
arrival taxis at hotspot qr with FREE state, �twaitðqrÞ and
�tdepðqrÞ are the average wait time and average departure
interval of the arrival taxis at qr. Besides, NoncallðqrÞ is the
number of arrival taxis with ONCALL state at qr. The com-
plete PQI algorithm is shown in Algorithm 2.

Algorithm 2. Passenger Queue Inference (PQI)
Algorithm

Input: NfreeðqrÞ, �twaitðqrÞ, �tdepðqrÞ, NoncallðqrÞ, Qloc and thresholds
hwait; hdep; ts; tl; tratio.

Output: Labeled possible PQ with type T1, T2 or T3.
1: for each qr in Qloc do
2: ifNfreeðqrÞ < ts and �twaitðqrÞ < hwait then
3: Label qr as a possible PQ location with type T1;
4: else if NfreeðqrÞ � tl and �tdepðqrÞ < hdep then
5: Label qr as a possible PQ location with type T2;

6: else if NoncallðqrÞ
NfreeðqrÞ > tratio then

7: Label qr as a possible PQ location with type T3;

In general, the PQI algorithm uses three separate condi-
tions to infer passengers queuing for taxis:

(1) A small number of arrival FREE taxis NfreeðqrÞ and
meanwhile a short average taxi wait time �twaitðqrÞ are
both observed. This condition indicates that all
arrival taxis are quickly taken at hotspot qr, but the
current taxi supply there is relatively small.

(2) A large number of arrival FREE taxis NfreeðqrÞ and
meanwhile a short average taxi departure interval
are both observed. This condition indicates that a
taxi queue may currently co-exist with a passenger
queue at hotspot qr.

(3) A large ratio of arrival ONCALL taxis to FREE taxis
at hotspot qr is observed, which means a large frac-
tion of passengers choose to book taxis instead of
waiting for FREE ones. This condition is based on
the fact that passengers in Singapore usually prefer
hailing down a FREE taxi rather than booking one
due to significant booking charges.

If any one of the above three conditions is satisfied, the
corresponding hotspot would be labeled as possible PQ loca-
tion, with the type T1, T2 or T3 respectively, during that buff-
ering time period. The DHD and PQI algorithms are
designed based on our previous study [14], where we also
use taxi status transitions to identify the demand hotspots. A

key differentiator in this work is the introduction of a new
condition in the PQI algorithm, i.e., the ratio of ONCALL
taxis to FREE taxis, to infer PQ.

The latest inferred PQ would be added into the location
list on the cloud side, which can be fetched by the running
UCC application. Meanwhile, the cloud side actively trig-
gers the UCC application (via GCM messages) on mobile
devices that were reported to be near such PQ locations.

4.4 Data Fusion & Analytics Layer

This layer aggregates the queue sensing results from the
smartphones and conducts the two analytics tasks: 1) vali-
date the existence of PQ; 2) estimate the average passenger
wait time, denoted as Tpq.

When a user ‘joining’ or ‘leaving’ a queue event success-
fully detected, the UCC would send out a message to the
cloud side, comprising a 4-tuple payload id; desc; time; loch i,
where id is the smartphone’s GCM ID, desc is either queuing
start or queuing end, time is the current timestamp, and loc is
the device location. We design a novel algorithm, called pas-
senger queue validation (PQV) algorithm (see Algorithm 3),
to process the delivered UCC messages and conduct the two
analytics tasks.

Algorithm 3. Passenger Queue Validation (PQV)
Algorithm

Input: A new UCC message id; desc; time; loch i, hash table W ,
hotspot set Qloc, threshold hdist and hq.

Output: Validated passenger queue and avg. wait time Tpq.
1: if id is not a key inW then
2: for each qr in Qloc do
3: if distance(loc, qr) < hdist AND desc = start then
4: Insert a new key-value pair ðid; ½qr; time�Þ into the

hash tableW ; NðqrÞ  NðqrÞ þ 1;
5: if NðqrÞ � hq then
6: Validate a passenger queue at qr;
7: else if id is an existing key inW then
8: Get the value ½qr; ts� fromW using id;
9: if desc ¼ end AND ts 6¼ null AND time 6¼ null then
10: Validate a passenger queue at qr;

11: TpqðqrÞ  TpqðqrÞ�NðqrÞþtime�ts
NðqrÞþ1 ;

12: Remove the key-value pair ðid; ½qr; ts�Þ fromW ;

Briefly speaking, the algorithm runs in a message driven
way, meaning each arrived UCC message would invoke the
algorithm once. Moreover, the algorithm constructs a hash
tableW , whose key is the GCM ID (i.e., id) and the value is the
user queuing start time ts together with the corresponding
hotspot location qr. Whenever an UCC message sent from a
new smartphone, i.e., id is not an existing key inW , the PQV
algorithm would then check whether the location loc is close
to any hotspot and whether the UCC message is a “queuing
start” message. If both conditions are true, the algorithm
would insert a new key-value pair, i.e., ðid; ½qr; time�Þ, into
the hash table W , and count one more queuing user at qr. If
the number NðqrÞ is more than the threshold hq, PQV would
validate a passenger queue at qr. The basic design logic is that
a passenger queue can be confirmed when several queuing
passengers are detected at the same hotspot.

When id is an existing key inW , namely the UCCmessage
sent from a commuter who already starts queuing, the
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algorithm would directly retrieve the stored values from W ,
i.e., the queuing start time ts and the queuing location, say qr.
It then checks whether the delivered message is a “queuing
end” message, i.e., desc ¼ end. If it is true, PQV would vali-
date the passenger queue at qr, and meanwhile update the
estimated wait time value Tpq at qr. Finally, the existing key-
value pair would be removed from the hash tableW .

In the practical implementation, when no UCC message
arrives from hotspot qr for more than one buffering dura-
tion, all the corresponding variables, including TpqðqrÞ and
NðqrÞ, would be initialized. A key attractive feature of the
PQV algorithm is that it does not require a high deployment
density–i.e., the the queuing context from a small proportion of
waiting passengers can validate passenger queues and estimate
average passenger wait time.

4.5 Experimental Results

We run theDHD algorithm and the PQI algorithmon the taxi
data during one month period: the speed threshold hsp and
the buffering duration Tb in DHD algorithm are set to 10 km
per hour and 1800 seconds respectively. The thresholds in
the PQI algorithm are the localized parameters: for a given
hotspot, we compute its 20th percentile of taxi wait time and
20th percentile of taxi departure intervals, and use these two
values as the thresholds hwait and hdep respectively; similarly,
we compute the 20th percentile and 80th percentile of FREE
taxi arrival number during each buffering period, and use
the two values as the thresholds ts and tl respectively; the
last threshold tratio is set to the average ratio of booking job
number to the street job number at the given hotspot.

Fig. 5 shows the average number of the identified
demand hotspots and the inferred PQ hotspots at different
time slots. We see that the total number of the demand hot-
spots significantly increases during the day time, and less
than 50 percent demand hotspots are inferred as PQ hot-
spots during the peak hours (11AM to 10PM). Hence, it is
not necessary to conduct the smartphone sensing at all the
identified hotspots; we can focus on the inferred PQ hot-
spots. For practical reasons, it is hard for us to concurrently
and continually monitor the 120+ possible hotspots in Sin-
gapore to collect the corresponding ground truth. Instead,
we utilize the manually collected taxi wait times, at 29 des-
ignated hotspots, published by Singapore government [15]
to perform partial validation of our results. In particular, all
the 29 hotspots are correctly detected by the DHD algorithm
(thus demonstrating 100 percent recall). and they follow the
same time-variant pattern shown in Fig. 5.

We select 15 busy demand hotspots, and Table 4 summa-
rizes their PQ inference results: the first column is the labeled
type by the PQI algorithm, and the second column is the

inferred PQ time in percentage. It shows that averagely 22.9,
5.6 and 10.2 percent of the time slots are labeled as T1, T2 and
T3 respectively. Meanwhile, 61.3 percent time slots are not
labeled, meaning the nearby participating smartphones
would not be triggered then and the corresponding energy
cost on smartphones would be saved. Assuming a worst-case
scenario, where a smartphone is perpetually near a demand
hotspot, we see that the UCC on the smartphone would run
for approx. 4 hours each day (2 hours in the morning peak
and 2 hours in the evening peak). Even in this pessimistic
scenario, the UCC’s daily energy consumption is approx. 350
milliWatt-hours, i.e., around 4.4 percent of the nominal bat-
tery capacity of a Samsung smartphone (7.98Wh).

The third column in Table 4 is the corresponding failed
booking number: a failed booking means a taxi booking
request dispatched to the taxis nearby but no one available,
and thus a large failed booking number at a hotspot indicates
the current taxi supply less than its demand here.We see that
the non-labeled type has a much smaller failed booking
number, i.e., 0.66, than the other three types, which at least to
some extent validates the PQ inference results. The type T2

has a relatively lower number (i.e., 1.45) than type T1 and T3.
It is possibly due to T2 is derived from the condition that a
large number of FREE arrival taxis with a fast departure rate:
where passengers see more FREE taxis and thus are more
willing to wait in the queue rather than booking one.

Fig. 6 shows the histogramof the distance between any two
identified demand hotspots: only 4 pairs have the distance
smaller than 50 meters, and the majority falls in the range of
1,000 to 5,000 meters. Given the GPS localization error can be
several meters [16], it shows that most identified demand hot-
spots are relatively far from each other, and thus the commod-
ity smartphoneswith GPSmodule are able to well localize and
distinguish these demand hotspots. The identified demand
hotspots include not only the taxi stands, but also other popu-
lar pickup locations, such as hospitals and schools.

Fig. 5. Variance of hotspot number.

TABLE 4
PQ Inference Results and Validation

Type Labeled by
PQI Algorithm

Percentage Average Failed
Booking Number

T1 22.9% 4.53
T2 5.6% 1.45
T3 10.2% 3.63
Non-Labeled 61.3% 0.66

Fig. 6. Histogram of distance between two hotspots.

LU ET AL.: SMARTPHONE SENSING MEETS TRANSPORT DATA: A COLLABORATIVE FRAMEWORK FOR TRANSPORTATION SERVICE... 953



We conduct the passenger queue validation experiments
during both morning and evening peak hours at 6 different
busy hotspots, which consists of totally 31 sessions and each
session operates at least 30 minutes. During the session, 3 to
5 participants randomly join the PQ with their own smart-
phones running the UCC application. The smartphones are
put into the participant’s trouser pocket or holding on the
palm. An observer takes down the ground truth during
each session: the start and the end time of each queuing peo-
ple (including both the participants and other queuing pas-
sengers). The commercial 3G cellular networks are used to
communicate with the backend cloud. On the cloud side,
the distance threshold hdist and the parameter hq used in the
PQV algorithm are set to 100 meters and 3 respectively.
Meanwhile, all the UCC applications periodically fetch the
location list from the cloud every 3 minutes.

Among all the sessions, 90.3 percent sessions successfully
validate the PQ at the given hotspot. The unsuccessful cases
are mainly due to two reasons: 1) the queuing time is too
short to be captured by the UCC application (typically
smaller than 90 seconds); 2) the UCC application misclassi-
fies the queuing activity into the non-queuing activity. Fig. 7
shows the box plots of the passenger wait time from the PQV
algorithm and the ground truth collected by the observer
during both the morning sessions and evening sessions. We
see that the system can fairly estimate the passenger wait
time with the average mean error less than 15 percent. Note
that the box plot results are based on the fact that at least 3
participants with UCC in the same passenger queue, while
the estimation error may increase if fewer participants con-
duct sensing there. In short, the experiment results show that
the system can accurately validate PQ and meanwhile fairly
estimate the passengerwait time at the hotspots.

5 EXEMPLARY APPLICATION 2: SUBWAY

BOARDING ANALYZER

In this section, we present the second application, which
collaboratively uses personal smartphone sensing data in
tandem with records of passenger ingress/exit activity at
subway stations.

5.1 Problem Description

Due to the popularity of the subway system (which pro-
vides a reliable and extensive transportation network that
is immune to traffic jams or bad weather), there is an
extremely high demand, especially during peak hours.
(Fig. 8 shows a snapshot of queuing passengers inside a

Singapore subway station.) As a result, trains often get filled
beyond their maximum loading capacity, and queuing com-
muters at subsequent stops may not be able to board an
arriving train, but instead have to wait for the subsequent
train on the platform. Such “failed boarding” (FB) events
are not uncommon at the busy stations in Singapore, and
contribute significantly to a lowered perception of the over-
all commuting experience.

To capture such individual-specific FB events, we require
information from both an individual commuter and the sub-
way operations infrastructure. Currently, the subway sta-
tions use automatic ticketing gantries, which require
commuters to tap in and tap out their RFID-equipped tickets,
thereby providing a repository of timestamped entry/exit
traces of passenger data. By leveraging on such large-scale
subway informatics records and individual-level smart-
phone sensing, our TRANSense framework can enumerate
the severity of FB events at different stations/platforms.

5.2 Transportation Data Collection Layer

In Singapore, the subway system, called massive rapid tran-
sit (MRT) system, serves more than one million commuters
daily [17]. The deployed automatic ticketing system uses a
contactless ticketing card to charge the trip fares at all sub-
way stations. As ticketing card users get a fare discount,
nearly all Singaporean residents (and the vast majority of
visitors) use the card to utilize MRT and bus services. For
the MRT service, the ticketing card is required to tap in and
tap out at the gantry to calculate the current trip fare. Each
card transaction record in the system contains multiple
fields; for our FB-analytics work, we use only the fields
(which are completely anonymous) summarized in Table 5.

5.3 Transportation Data Processing Layer

This layer has two objectives (both based on the ticketing
card data): (a) the main objective is to detect the subway
train arrival events on the platform, while (b) a secondary

Fig. 7. Estimation of passenger wait time.

Fig. 8. Queuing passengers inside a subway station.

TABLE 5
Field and Description of Ticketing Card Record

Field Description

Card_Number Encrypted Card ID
Entry_DT Date and Time when Passenger Entering Station
Exit_DT Date and Time when Passenger Exiting Station
Origin Location ID of Entry Station
Destination Location ID of Exit Station
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objective is to identify the likely “crowded” subway stations
(this identification being used to trigger the sensing/analyt-
ics by the UCC client on nearby mobile devices).

Train Arrival Detection. While the subway trains nomi-
nally have a fixed arrival time schedule, in practice, they are
easily delayed due to longer boarding time or other unex-
pected situations, especially during the peak hours. Even a
single train’s short delay at a station results in cascaded
impacts on multiple subsequent operating trains and their
arrival time. We thus design a practical algorithm, called
train arrival detection (TAD), to detect the actual train arrival
time using the ticketing card data. The complete algorithm
is shown in Algorithms 4 and 5.

Algorithm 4.Map Function of the TAD Algorithm

Input: An empty key, and a card transaction record value
1: if value is valid then
2: Set key = value.Destination;
3: Emit(key, value);

Algorithm 5. Reduce Function of the TAD Algorithm

Input: A key of a station ID, and an iterator values, threshold u.
1: Initiate empty lists Q;
2: while values.hasNext() do
3: Q.add(values.next());
4: Sort Q based on Exit_DT, denoted as fezðiÞji ¼ 1; 2; . . .g;
5: Set the sliding time windowW , andNA  0,NB  0;
6: for all ezðiÞ:Exit DT inW do
7: if ezðiÞ:Origin 2 Direction A then
8: NA  NA þ 1;
9: else if ezðiÞ:Origin 2 Direction B then
10: NB  NB þ 1;
11: Slide to next time windowW 0;
12: Repeat the above steps to obtain N 0A and N 0B duringW 0;
13: if NA

0�NA
NA

> u ANDW is not marked for Direction A then

14: MarkW 0 for Direction A as a train arrival time window;

15: if NB
0�NB
NB

> u ANDW is not marked for Direction B then

16: MarkW 0 for Direction B as a train arrival time window;
17: emit(key, marked time windowW 0 � Dt);

The basic idea is as follows: shortly after the arrival of a
train at a busy station, alighting passengers would lead to a
burst of tap-out transactions at the station. Therefore, such
train arrival events can be detected by discovering such
short-lived deviations in the overall tap-out rate in the tick-
eting card transactional data. In our current implementa-
tion, the large volume of ticketing card data is maintained
in a Hadoop system, and analyzed using the MapReduce
framework. The Mapper essentially groups all the ticketing
card records of an individual destination station. A Reducer
will first uses the given MRT station ID to find all the exiting
passengers at the station during the given time window W .
It then classifies the exiting passengers into different travel-
ing directions by utilizing their origin station ID. (Note: the
need to obtain the traveling direction arises because we
would like to distinguish between the arrival of trains on
the two different directions of travel associated with each
train line.) After that, the algorithm counts the number of
departing passengers separately (for each direction) during
the current time window, e.g., NA , and the next time

window, e.g., N 0A. Finally, the algorithm identifies the train
“arrival events” using the following two conditions: 1) a sig-
nificant increase from NA to N 0A; 2) no train arrival event is
detected during the last time window at that direction. In
addition, Dt is deducted from the marked time window W 0

at the final step, to account for the time that a passenger
takes to walk from the platform to the station exit gantry. Dt
is clearly station dependent (it mainly depends on the inter-
nal layout of the station) and typically ranges between 60-
180 seconds in our studies.

In the TAD algorithm, we use the “origin station ID” to
help determine the train’s direction. In reality, some origin
stations cannot clearly indicate the passenger’s travelling
direction, as multiple feasible (and likely) routes (on different
lines) may exist between the observed (origin, destination)
pair. However, for each direction at a given destination
station, it is possible to find a smaller set of “unambiguous”
origin stations, which provide a clear indication of the passen-
ger travel direction. Such an “unambiguous” origin station
has two properties: 1) either there is only one feasible route
from it to the destination; 2) or there may be multiple routes,
but one route has a significantly shorter traveling time than
other alternatives. In the practical implementation of the TAD
algorithm, for any given destination station, the system
only choose the ticketing card records generated by such
“unambiguous” origin stations. We do observe that the num-
ber of such “unambiguous” stations is much lower at key
interchange stations (wheremultiple lines intersect). As a con-
sequence, the overall volume of ticketing card records proc-
essed by the TAD algorithm may be much smaller than the
total volume of exiting passengers, thereby potentially
impacting the accuracy of our analysis. In such cases, the sys-
tem may need to utilize additional information from the tick-
eting system: for example, the entry/exit gantry ID would be
helpful, as passengers with different subway lines/directions
usually use different gantries. For our current paper, we per-
form the analysis with TAD only on those stations that have a
sufficient number of “unambiguous” origin stations (and
thus do not require any additional gantry-level information).

The threshold u affects the accuracy of train arrival detec-
tion. An overly large value fails to detect the actual train
arrival events, while an unduly small value leads to false
alarm (too many train arrival events). Moreover, an appro-
priate value for u also depends on each station’s popularity
(the intensity of departing or arriving passengers at different
times). Hence, our approach models u as a station-specific
parameter; we shall explain the empirical derivation of u

later, when we describe the experimental results. Note that,
in the future, u may also be continually adjusted by auto-
mated machine learning techniques that effectively attempt
to match the inter-arrival distribution and total number of
train arrivals to known values obtained from external obser-
vations (e.g., known values of train frequencies).

Crowded Station Identification (CSI). A separate CSI algo-
rithm is used to process the underlying ticketing card trans-
actional records to identify the set of crowded stations–i.e.,
the ones where there is likely to be a higher incidence of FB
events. The basic idea is as follows: a crowded station usually
has a large mismatch between the number of entry passen-
gers and exit passengers, with the number of entry passen-
gers far exceeding the exiting ones. The core logic of the CSI
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algorithm (represented as the Reduce operation of a separate
Map-Reduce implementation) is shown in Algorithm 6.

Algorithm 6. Crowded Station Identification (CSI)
Algorithm

Input: Grouped card records fezðiÞji ¼ 1; 2; . . .g, station ID sj
and thresholds h.

Output:Marked crowded subway station.
1: Set sliding time windowW , andNentry  0, Nexit  0;
2: for each ezðiÞ do
3: if ezðiÞ:Origin ¼ sj AND ezðiÞ:Entry DT 2W then
4: Nentry  Nentry þ 1;
5: if ezðiÞ:Destination ¼ sj AND ezðiÞ:Exit DT 2W then
6: Nexit  Nexit þ 1;

7: if
Nentry�Nexit

length of W > h then

8: Mark sj as a crowded station during time windowW ;

Similar to the TAD algorithm, the mapper function
groups all the ticketing card records by origin station and
destination station, and sends them to a reducer to process.
The CSI algorithm on the reducer side operates on a per-
station basis, first calculating the difference between the
corresponding entry rate and departure rate. If the mis-
match is larger than the threshold value, the algorithm will
mark the station crowded. As a result, the TRANSense frame-
work would then trigger the UCC applications (in a manner
similar to the Taxi Analyzer application) on nearby smart-
phones to activate the sensing needed to detect potential FB
events. The threshold h in the CSI algorithm is critical: An
overly large value would result the system failing to detect
the crowded stations, while an unduly small value would
lead to a number of false alarms. Hence, it is carefully set as
a station-specific parameter as well, which will be elabo-
rated in the evaluation part.

5.4 Data Fusion & Analytics Layer

In this layer, the main objective is to detect FB events by com-
bining the detected train arrival events and the smartphone
sensing results from the UCC applications. The designedUCC
application can detect the passenger queuing activity on the
platform (by mode-B of the advanced activity classifier) and the
subway movement (by its kinematic motion classifier)–i.e., it can
detect both queuing-related behavior by a passenger on the
platform as well as the subsequent subway movement state of a
passenger who has successfully boarded the train. More spe-
cifically, the UCC classifier would notify the server of a 4-tuple
payload id; desc; time; loch i, where id is the smartphone’s
GCM ID, desc is either queuing or subway movement, time is the
current timestamp, and loc is the device’s location.

We now present the failed boarding detection (FBD)
algorithm that identifies such FB events by combining such
mobile device-generated alerts with the train arrival events
detected from the ticketing card data. The complete one is
shown in Algorithm 7.

Similar to the PQV algorithm used in the taxi service, the
FBD algorithm also runs in a message driven way–i.e., each
arriving UCC message would invoke the algorithm once. It
constructs a hash table HT , whose key is the GCM ID of
smartphones and value is the queuing time ts together with
the subway station si. Whenever an UCC message sent

from a new smartphone, i.e., id is not a key in the hash table
HT , FBD would then check whether the smartphone
location loc is close enough to a subway station and whether
the UCC message is a “queuing” message. If both condi-
tions are true, the algorithm would insert a new key-value
pair, i.e., ðid; ½si; time�Þ, into the hash tableHT .

Algorithm 7. Failed Boarding Detection (FBD)
Algorithm

Input: A new UCC message id; desc; time; loch i, hash table HT ,
station set S and the threshold hdist.

Output: Detected FB events.
1: if id is not a key inHT then
2: for each station si in S do
3: if distance(loc, si) < hdist AND desc = queuing then
4: Insert a new key-value pair ðid; ½si; time�Þ intoHT ;
5: else if id is an existing key inHT then
6: Get the value ½si; ts� fromHT using the id;
7: if desc ¼ subway movement then
8: Get the moving direction, say A, using loc and si;
9: if any train arrival detected during ts; time½ � in A then
10: A new FB event detected at station si in direction A;
11: Remove the key-value pair ðid; ½si; ts�Þ fromHT ;

Whenever the arrived id is an existing key inHT , meaning
the UCC message is sent from a smartphone whose user is
already in the “queuing” state, FBD would directly retrieve
the stored value fromHT , i.e., subway station si and queuing
time ts. If the UCCmessage is a “subway movement” message,
the algorithm will get the smartphone’s moving direction
based on its latest location and its queuing station. However,
if any train arrival in the same direction is detected during
the time period for which the user was in the ‘queuing’ state,
the algorithm would confirm a new FB event detected
(for that specific user) at that station. The existing key-value
pair would be removed from the hash tableHT .

Note that the proposed algorithm identifies the FB events
of only the participating smartphone users. It may thus
appear that this system is capable only of providing individ-
ual-specific insight about the commuting experience. How-
ever, in reality, multiple commuters typically the same
“skip the current train” behavior when faced with an over-
crowded train. Accordingly, it is not necessary to capture
FB events from all commuters on a platform. The detection
of multiple FB events from even a smaller set of participa-
tory users can alert the train operator that the train has
become overcrowded. Accordingly, for this particular appli-
cation, the TRANSense framework is capable of providing
useful aggregate-level insights as well.

5.5 Experimental Results

We ran the TAD and CSI algorithms on our one-month long
subway dataset (which included nearly 50 million transac-
tion records from 1.7 million subway commuters). The slid-
ing time window sizeW is set to 60 seconds and 900 seconds
for the TAD algorithm and CSI algorithm respectively. The
parameters u used in the TAD algorithm and h used in the
CSI algorithm are computed empirically for each individual
MRT station as follows. For a given station, we collect its exit
passenger numbers at each time window and then compute
the 60th percentile over all the positive increasing rates (i.e.,
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windows where the passenger exit exceeds that of the prior
window). The computed value is used as the threshold u for
that station. Separately, we calculate the difference of entry
rate and exit rate during each of “net inflow” time windows
(i.e., time windows where the entry passenger count exceeds
the exit count), and then use the 80th percentile over all such
differences as the threshold h for that station.

TAD & CSI Performance.We run the TAD algorithm at the
busy stations during morning peak (7:30 AM–9:30 AM) and
evening peak (17:30 PM–19:30 PM) periods. Our results
show that 86.7 percent train arrival events are successfully
detected. TAD fails in two distinct scenarios: 1) when two
consecutive trains arrive within a short time interval; or 2)
only a few passengers alight from the arrival train (and thus
do not cause a blip in the MRT exit records). Fig. 9 shows an
example of applying TAD at a busy station during the even-
ing peak hour: we see that during the 30-minute time
period, 9 train arrival events are successfully detected, with
the average inter-train arrival gap of approx. 200 seconds.
TAD failed to detect only one train arrival (the event at
18:07 PM), as its arrival time was quite close to the previous
one (only around 100 seconds time interval).

We run the CSI algorithm on the same period of the tick-
eting card data: of the total set of subway stations, we find
that 11 and 13 subway stations, respectively, are frequently
(more than 75 percent of the time) marked as “crowded’ sta-
tions during the morning peak and the evening peak hours.
During the morning peak, the total hourly entry rate is
around 65,000 and the exit rate is around 33,000–i,e., on
average, around 1,084 passengers enter and 617 passengers
leave these 11 stations every minute.

FB Detection Performance. To study the ability to accu-
rately detect FB events, we conducted multiple experiments,
during both morning peak and evening peak hours, at 9 dif-
ferent subway stations (consists of of a total of 22 distinct
sessions). During each session, 3 to 4 participants joined the
waiting queue on the platform with the smartphone run-
ning the UCC application. The smartphones were either in
the participant’s trouser pocket or held in their hand. A sep-
arate observer noted the ground truth of each participant
(his or her ‘queuing start’ and ‘train boarding’ times) during
the session, as well as the arrival and departure time of each
train on the platform. The commercial 3G cellular networks
are used to communicate with the backend cloud. On
the cloud side, the distance threshold hdist used in the FBD

algorithm is set to 100 meters. All the participating UCC
applications periodically fetch the crowded station list from
the cloud every 5 minutes. Note that one FB event means
one participant failed to board the latest arrival train; for
some sessions, we may have no FB event (as all participants
successfully boarded the first arriving train).

Table 6 summarizes the FB event detection results: we
see that 87.1 and 89.7 percent FB events are successfully cap-
tured during the morning session and evening sessions
respectively. We also found that nearly 30 percent of the
detected FB events occurred consecutively–implying that the
participants failed to board multiple consecutively-arriving
trains due to overcrowding. On the other hand, around 11.7
percent FB events are not detected–such false negatives
were mainly caused by the UCC classification errors in the
kinematic motion classifier and advanced activity classifier.

To clearly understand the need for combining such MRT
andmobile sensing data, we compared our approach with an
alternative smartphone-only method, where only smartphone
sensingwas used to detect the FB events. In this approach, we
assumed that an FB event occurred whenever a queuing
commuter’s activity (on the platform), as computed by basic
activity classifier in UCC, was seen to transition either (i) from
stationary to stepping or (ii) from emphstationary. Table 7 gives
the FB detection results for both the TRANSense and smart-
phone-only approaches: we see that both methods achieve a
good recall rate, implying that most of actual FB events can be
successfully detected by both methods. However, the preci-
sion of the second method (smartphone sensing only) is sig-
nificantly lower, i.e., only around 32.5 percent, due to a large
number of false positive cases. In particular, in the absence of
corroborating train arrival data, random movements of a
commuter are interpreted incorrectly as FB events, leading to
a high false-positive rate.

In summary, the experimental results show that the
TRANSense framework can accurately capture the FB events
for the subway service, and that the collaborative fusion of
the subway data with the smartphone sensing data signifi-
cantly increases the FB detection accuracy.

6 DISCUSSION

6.1 Possible Limitations

In general, our algorithms are based on the expected behav-
ior of commuters at typical high-demand hotspots (for both

Fig. 9. Detected train arrival events using ticketing card data.

TABLE 6
Failed Boarding Detection Results

Detected Number Ground Truth Percentage

Morning Peak Hours 27 31 87.1%
Evening Peak Hours 26 29 89.7%

Total 53 60 88.3%

TABLE 7
Accuracy of Two Methods for FB Detection

FB Detection Method Precision (%) Recall (%) F1 score

Subway Data + Smartphone Sensing 94.6 88.3 0.91
Smartphone Sensing Only 32.5 91.6 0.48
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taxis and train stations), andmay need to be extended to han-
dle less-common scenarios. For example, the Taxi Service
Analyzer assumes that a large queuing time occurs primarily
at hotspots (those locations with a significant number of taxi
pickup events). However, there may be certain remote pas-
senger queuing locations, where the overall taxi demand is
low but taxi arrivals are even more intermittent. While it is
likely that passengers may simply book taxis at such loca-
tions, the long wait time is still unavoidable, and thus new
algorithms and design may be needed for such cases. Simi-
larly, the Subway Boarding Analyzer assumes that the arrival
of a crowded train at a platform will usually result in a
noticeable number of disembarkations and consequent pas-
senger ‘tap-out’ transactions. While it is a reasonable
assumption, this approach of detecting train arrival events
will fail for some special stations (through which most pas-
sengers simply transit without leaving the station). A more
careful analysis of the passenger entry/exit patterns at
upstream and downstream stations (that needs to effectively
take into account the connectivity graph of the train network)
might be able to reveal such ‘hidden crowding’ cases.

Some time-dependent and location-dependent parameters
used in the current algorithms, such as the thresholds used in
Algorithms 5 and 6, are crucial to the system performance.
Currently, these parameters are derived fromempirical obser-
vations using a primarily heuristic approach. To provide greater
robustness, we are now exploring the use of machine learning
techniques to automatically derive these values based on his-
torical measurements. For example, the thresholds can be
learnt via simple adaptation techniques that aim to maximize
the correlation or agreement between sampled ground-truth
values and inferences obtained via our algorithms. Moreover,
cost-sensitive classification techniques can be used to appro-
priately reflect the application-specific desired tradeoff
between false-positive and false-negative errors.

6.2 Offline versus Real-Time Implementation

The empirical results presented in this paper are all based on
offline analytics–using traces of historical subway and taxi
data, and replaying them through the developed TRANSense
modules. While such offline analytics is adequate for our
goals (of demonstrating the unique ways in which transac-
tional transport data can be combined with participatory
mobile sensing), additional modest system enhancements
may be needed to support a more real-time implementation.
For example, the detection algorithms for taxi hotspot loca-
tions or crowded stations may need to modified to support
more aggressive and early detection; similarly, the Map-
Reduce based implementation of our analytics may need to
be enhanced to support asynchronous (potentially delayed)
arrival of transactional data. Such “systems” issues provide
interesting directions for futurework.

6.3 Smartphone Sensing Enhancement

In the current implementation of the UCC application, we do
not make a distinction between car movement and busmove-
ment in the kinematic motion classifier and simply regard
both as the motorized movement class. It is feasible to further
classify these two transport modes in the next version of
UCC: such design would help the Taxi Service Analyzer to eas-
ily exclude the bus passengers at the locations where taxi

demand hotspots are nearby the bus stops. More features and
sensor data may need to be added, such as using the audio
sensor [18] to detect the beep sound of the ticketing card
reader on the bus. Besides, the UCC application may need to
keep running for additional several minutes, especially after
commuters getting on the vehicle, to accurately identify the
transportationmode. Besides, the bus-related commuter sens-
ing information, combing with the public bus data, would
enable building a newanalyzer specifically for the bus service.

6.4 Transportation Data Enrichment

In the given two exemplary applications, we only use the basic
information of the transportation data from the taxi system
and subway system. The richer and better quality of transpor-
tation data would help to significantly improve the system
performance. Take the current Subway Boarding Analyzer as an
example: it is relatively hard to accurately detect the train
arrivals at some interchange stations by only using the origin
and destination station ID, as such origin-destination pairs
cannot determine a unique train route and direction. How-
ever, it would be much easier to tackle this issue, when the
system further utilizes the exit gantry ID, as subway commut-
ers taking different subway lines normally pass through dif-
ferent gantries at the interchange stations.

Furthermore, the transportation data used in the current
two applications are mainly collected from the public trans-
port operators. The latest technologies, e.g., near field com-
munication (NFC), would enable the smartphone-based
payment for the transportation service, and thus the smart-
phone may have both transportation service information
and user activity information. It would enable a new way to
aggregate the information from both sides, and accordingly
facilitate building new analytics applications for the public
transportation services.

6.5 Potential Applications

The core of the proposed TRANSense framework is the belief
that combining data from transportation-related infrastruc-
tural information sources with personal mobile sensing can
provide richer person-centric insights that go beyond simple
operational statistics. Such insights can benefit both the
commuting public and transportation operators. For exam-
ple, accurate and real-time estimation of queuing delays at
bus stations and taxi stands can be integrated into a travel-
planning mobile application, which a commuter can use to
make better real-time decisions (e.g., deciding whether to
wait for a taxi or take a bus from a nearby location). Accurate
and fine-grained understanding of a commuter’s transporta-
tion-related experiences can also help operators engage better
with consumers. For example, if the application detects mul-
tiple failed-boarding attempts, it can provide dynamic
rewards to specific commuters, thus helping assuage some of
their justified resentment. In a similar vein, if an application
can accurately detect how long an individual elderly com-
muter had to stand in a bus before getting a seat (as opposed
to just computing overall crowdedness levels), operators
could preferentially reward such commuters with incentives
(e.g., higher chances of winning lucky draws) or more intelli-
gently deploy small autonomous bus fleets on targeted short-
distance routes (thereby tackling localized aggravations that
are hard to infer purely from infrastructural data).
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Note also that, while the specific two applications
described here were driven by the characteristics of the
Singaporean transportation network, the generic TRANS-
ense concepts can apply to other cities, which may have
their own distinct characteristics. For example, cities such
as London have a flat fare system for buses, and hence can-
not track passenger disembarkations–in such scenarios,
TRANSense can provide useful fine-grained observations
on a commuter’s behavior.

7 RELATED WORK

7.1 Urban Computing and Transport Data

Taking advantage of the vast amounts of mobile data gener-
ated from heterogeneous sources in urban space, urban com-
puting [19] principally focuses on quantifying key aggregate-
level metrics for improved city operations. As part of these
efforts, public transportation data, including taxi data [20]
and smart card data [2], have been widely used to tackle a
variety of urban problems. For example, the taxi data are used
to study urban planning [21], traffic mobility [22] and the
driver recommender systems [23]. The smart card data are
used for travel behavior analysis [24], passenger segmenta-
tion [25] and station density study [26]. We utilize such city-
scale datasets in tandem with modest amounts of participa-
tory mobile sensing to uncover other a commuter’s latent and
personalized experienceswith transportation services.

A number of cities are now making transportation
related datasets more publicly available. For example,
Copenhagen provides a platform called city data exchange
[27] to publish its bicycling and other transportation data.
London [28] and Los Angels [29] also provide similar plat-
forms and transportation datasets to support urban comput-
ing and data analytics.

7.2 Mobile Phone Sensing

The camera-based solutions [30] for human activity recogni-
tion usually suffer from complexity issues and privacy con-
cerns [31]. Solutions based on wearable sensors can avoid
such issues, especially for classifying everyday locomotive
activities (such as standing or walking) [32]. On the other
hand, the sensor-based activity classification techniques
exhibit poor performance when the sensor is subject to
usage-induced artefacts, such as the user casually swinging
or frequently rotating. Themost common approach is to sim-
ply discard the sensor data when such artefacts are detected.

Smartphone-based sensing and activity recognition [33],
including analysis of user queuing behavior [9], have made
rapid progress recently. Smartphone sensor data has also
been used to classify different modes of vehicular transport,
including bus, car and trains in [34]. These studies utilize
different features extracted from a variety of smartphone
sensors, especially from the 3-axis accelerometers. Alterna-
tive sensing modalities have also been used to infer urban
commuting states, e.g., Anderson and Muller [35] explored
the use of cellular signal variation to capture different types
of user movement. Our UCC application utilizes the same
inertial-sensing based estimation strategy; however, we
innovate in developing an energy-efficient triggering strat-
egy and a 3-tier classification architecture that is specially
tuned to our commuting activities of interest.

7.3 Participatory Sensing

Participatory sensing [3] approaches rely on the voluntary
contribution of mobile sensing data from multiple partici-
pants to infer various urban environmental states. Zhou
et al. [18] utilize mobile phone’s cellular signal and audio
information from bus passengers to predict bus arrival time.
Ganti et al. [36] gather vehicles’ on-board diagnostics and
location information to study the fuel efficiency for different
routes. Consolvo et al. [37] collect individual’s nutrition and
exercise information to track their personal fitness. More
recently, Elhamshary et al. [6] have developed the TransitLa-
bel system to annotate various semantic locations at train sta-
tions, based on large-scale participatory sensor data.

8 CONCLUSION

We have introduced the TRANSense framework, which aims
to derive insights by fusing aggregate insights from city-scale
transportation informatics data sources with carefully-acti-
vated participatory mobile sensing data. We demonstrated
the promise of this approach via two applications. First, the
Taxi Service Analyzer is able to identify taxi demand hotspots
and then employ mobile sensing to estimate the wait time of
individual commuters (within an error bound of 15 percent,
and with practically negligible energy overhead). Second, the
Subway Boarding Analyzer is able to reliably (with over 90
percent precision) identify the failed boarding attempts that
commuters make at crowded stations–this accuracy is
achieved by ingeniously detecting train arrival events from
smartcard transactional records, while we ensure low energy
overheads by triggering mobile sensing only during instants
when such boarding activity is plausible.

On a broader canvas, the TRANSense framework demon-
strates the importance of combining mobile sensing and
urban transactional data: the insights obtained reach a level of
accuracy that purely participatory mobile sensing has strug-
gled to provide. We believe that many other insights of prac-
tical interest (e.g., quantifying how crammed a commuter
feels in a bus, capturing how many passengers share a taxi
ride) can be estimated using this framework. Moreover, our
results show that certain aggregate insights (e.g., the average
waiting time at a taxi queue) can be obtained even with very
low levels of participatory sensing by the commuters.
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